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Memory function moment analysis of dynamic light 
scattering data 

R B Jones 
Department of Physics, Queen Mary College, Mile End Road, London El  4NS, U K  

Received 21 February 1984 

Abstract. We consider the problem of obtaining long-time diffusivities D L ( k )  from dynamic 
light scattering data for suspensions of spherical particles. Starting from the integro- 
differential memory equation for the intermediate scattering function F ( k ,  !), we derive an 
infinite-order linear differential equation for F ( k ,  1 )  with coefficients pcc,(t) expressed as 
finite-time moments of the memory function. We obtain an exact analytic representation 
of these moments for a model suspension of low-density hard spheres; numerical results 
for the moments in this model suspension are presented for a range of values of wavenumber 
and time. The numerical study shows that at short or intermediate times t one may neglect 
all but the low-order moments leading to a simplified differential equation for F ( k ,  I). At 
intermediate times this differential equation may be inverted to obtain the lowest moment 
pn(f) in terms of the experimentally measured slope of In F(k ,  1 ) .  The numerical study of 
the moments for the hard-sphere system indicates that even at quite short times pn( f )  gives 
an accurate estimate of F,(OO) from which the diffusivities DL(k) can be obtained. 

1. Introduction 

Dynamic light scattering from particulate suspensions is a versatile probe of the 
dynamics of interacting Brownian particles (Berne and Pecora 1976, Pusey and Tough 
1982). Excellent experimental data exist for suspensions of both neutral and charged 
spherical particles (Gruner 1980, Cebula et a1 198 1, Kops-Werkhoven and Fijnaut 
1982, Kops-Werkhoven er al 1982) but the theoretical interpretation of such data has 
been difficult. If the logarithm of the experimentally measured intermediate scattering 
function, In F'(k, t ) ,  is plotted against time, the graphs all show the qualitative features 
of an initial rapid decay followed by a region of slower decay at experimentally long 
times where the graphs are approximately linear in time. The initial slope of the graph 
determines a measured short-time diffusivity D,"( k )  while the slope of the longer-time 
part gives an experimental long-time diffusivity D F ( k ) .  To interpret these data one 
wishes to relate the measured diff usivities to theoretical calculations of the collective 
and self intermediate scattering functions F,( k, t )  and F,( k, t ) .  

In an ideal monodisperse suspension FM and F, should be identical but in  real 
suspensions polydispersity interferes with such an identification. Consider spherical 
particles identical in size but with a spread of values of index of refraction (optical 
polydispersity). For such a case Weissman (1980) and Pusey (Cebula er al 1981) have 
argued that FM is a sum of coherent and incoherent contributions 

FM(k, t ) = ( l  - x ) F , ( k ,  t ) + x F , ( k ,  t )  (1.1) 

0305-4470/84/112305 + 13$02.25 @ 1984 The Institute of Physics 2305 
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where 

x = 1 - (6)*/b2 

is a measure of the polydispersity of the light scattering amplitudes b of the different 
particles in the suspension (the bar denotes average values). If x can be varied in a 
controlled manner (Kops-Werkhoven and Fijnaut 1982, Kops-Werkhoven et a1 1982) 
from one experiment to another then the polydispersity gives a tool to obtain separately 
experimental values of F, and F,. Alternatively it may be possible in different regimes 
of k, t or concentration to argue that FM is dominated either by F, or F,. In what 
follows we will assume that F, and F, are known separately by experimental 
measurement. 

The measured FM(k, t )  is often fitted as a sum of exponentials in the time (Kops- 
Werkhoven and Fijnaut 1982, Kops-Werkhoven et a1 1982) 

F M ( k ,  t )  = A , ( k )  exp(-DY(k)k*r) + A , ( k )  exp(-Dr(k)k2t). (1.3) 

Such a procedure implicitly assumes that F, and F, are themselves exponential functions 
at long times. This latter assumption has been criticised by Hinch (1983) on the basis 
of numerical calculations on model suspensions and can be criticised on theoretical 
grounds away from the long-wavelength ( k  = 0) limit. In this article a new representa- 
tion of the time dependence of F,, F, is introduced in order to understand better when 
simple exponential behaviour may be expected and it is shown how, even if there is 
no simple exponential behaviour, one may analyse the experimental data at short and 
intermediate times to extract parameters to compare with theoretically calculated 
long-time diffusivities. In 0 2 we collect some definitions and introduce the theoretical 
long-time diffusivities. In 0 3 we give a new differential equation representation of 
F(k,  t )  by means of a finite-time moment expansion of the memory equation formalism. 
In 9 4 we use a hard-sphere model to study the behaviour of the moments as functions 
of k and t. In 0 5 we show how the differential equation representation may be used 
to fit experimentally measured curves of In F(k,  t )  in order to extract the theoretically 
defined long-time diff usivities. 

2. Long-time diffusivities 

The intermediate scattering functions for collective and self diffusion in a suspension 
of spherical particles are defined as density-density time correlation functions (Pusey 
and Tough 1982) 

1 N  

where N is the number of particles in the suspension, R p ( f )  is the position of particle 
p at time t, k is the scattering vector of the light and the angle brackets denote an 
equilibrium thermal average. At equal times ( t  = 0) these reduce to 

Fdk ,  0) = S ( k ) ,  Fs(k, 0) = 1, (2.2) 
with S ( k )  the static structure factor for the suspension. 
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If we now introduce the Fourier-Laplace transform of each of these correlation 
functions 

8( k, w )  = eiW'F( k, t) d t (2.3) lom 
then it is possible to express F,, F, in terms of wavenumber and frequency* dependent 
diffusion coefficients (Felderhof and Jones 1983a, Hess and Klein 1983) D,(k, w )  and 
6,( k, w )  as 

&k, w )  = S(k)/(-iw + k26,(k ,  w ) ) ,  gS(k ,  w ) =  (-iw + k z 6 ' , ( k ,  U ) ) - ' .  (2.4) 

The limiting values of these diffusion coefficients at zero frequency and zero wavenum- 
ber are the phenomenological collective and self diffusion coefficients (Kadanoff and 
Martin 1963) measurable by macroscopic diffusion experiments. In this hydrodynamic 
limit (first k + 0 then w + 0) the functions F ( k ,  t) become simple exponentials in time 
corresponding to the hydrodynamic pole in frequency which appears in the expressions 
(2.4). In light scattering, however, the system is probed at finite k away from the 
hydrodynamic limit. In this situation the (theoretical) long-time diffusivities are defined 
by (Felderhof and Jones 1983a, b, c, Hess and Klein 1983) 

D,"( k )  = lim 6,( k, w ) ,  

D , S ( ~ )  = lim ijC(k, w ) ,  

D , L ( ~ )  = lim f i S ( k ,  w ) .  (2.5) 
w - 0  W + O  

Short-time diffusivities are defined by an infinite frequency limit 

~ : ( k ) =  w-m lim 6s(/c, w ) .  (2.6) 
w-a: 

The short-time diffusivities are well understood (Pusey and Tough 1982) and can 
be expressed in terms of equilibrium correlations as 

D,sW = D o H c ( k ) / S ( k ) ,  m k )  = DoH,(k), (2.7) 

where the factors H,( k ) ,  Hs( k )  incorporate hydrodynamic interactions (Pusey and 
Tough 1982) and are equal to one if these can be neglected. By Do we denote the 
diffusion constant of a single particle in the infinite-dilution limit. The quantities Ds(k)  
are obtained experimentally as the initial slopes of curves of In F(k,  t) and the depen- 
dence of D:(k) upon the structure factor has been well established (Pusey and Tough 
1982). In principle the long-time diffusivities DL(k) can also be obtained from the 
experimental F(k, t) by use of (2.3), (2.4) and (2.5) as 

D,"( k )  = 6,( k, 0) = S ( k )  -So ( Jom ~ , ( k ,  I)  dt)- '  
k28, (k ,  0) - k 2  

and similarly for Dk(k) by the changes S ( k ) +  1 ,  c +  s. Thus long-time diffusivities can 
be obtained as the area under an experimental curve subject to errors arising from 
lack of absolute normalisation and from the fact that the data do  not extend to t = 00. 

The result (2.8), however, says nothing about whether F ( k ,  t )  is a simple exponential 
function of time or whether DL(k) can be found from the slope of In F(k,  t ) .  

3. Moment representation of the memory equation 

To investigate whether F ( k ,  t )  is, even approximately, a single exponential function 
of time we turn now to the memory equation (Ackerson 1978, Pusey and Tough 1982) 
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which can be written for Fc(k, t )  in the form 

dFc(k’ t)=-DP(k)k2Fc(k, t ) -  Mc(k, t-t’)F,(k, t’)dt‘ 
d t  

If we take the Fourier-Laplace transform of this equation and compare with (2.4) we 
obtain 

k26 , (k ,  U )  = k2D:(k) +Mc(k ,  w )  (3.2) 

with 

(3.3) 

where Mc(k, t )  is called the memory function (Berne and Pecora 1976, Ackerson 1978, 
Pusey and Tough 1982). To simplify (3.1) we introduce a dimensionless time r by the 
definition 

r =  Dok2t (3.4) 

and note that the k dependence must also be of dimensionless form ka where a is a 
characteristic length (the sphere radius for neutral hard spheres or a screening length 
or interparticle distance for charged particles) to obtain the dimensionless equation 

where Fc( k, t )  + gC( ka, r )  and 

A,(ka, T) = Mc(k, t)/(Dok2)2. (3.6) 

Equation (3.5) is written in a form appropriate to a system with one characteristic 
length (hard spheres); it would be modified in an obvious manner if the system had 
more than one characteristic length. 

The short-time behaviour of .Fc(ka, r )  has often been analysed by simple expansions 
about r = 0 such as the cumulant expansion ( h s e y  and Tough 1982). However, apart 
from the lowest term such expansions have not proved of great use and for hard-sphere 
systems it is known that FC(ka, r )  is not analytic at r = 0 (Ackerson and Fleishman 
1982, Jones and Burfield 1982a, b) so that such an expansion does not exist for this 
case. An alternative procedure is to take the memory equation in the form (3.5) and 
to expand 9 , (ka ,  7 -  7’) in Taylor series about the point 7, 

(-T’)“ d“FC(ka, r )  
.Fc( ka, T - 7’) = C - 

,,=o n !  d r ”  ’ (3.7) 

and then integrate term by term to convert (3.5) into an infinite-order differential 
equation 
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in which the coefficients pc , (ka ,  T )  are finite-time moments of the memory function 

n !  (3.9) 

Although the representation (3.8) is formally an infinite-order differential equation, at 
small to intermediate values of the time we may expect it to give a good description 
of Sc( ka, T )  if we keep only the lowest-order terms in the infinite series. The lowest-order 
moment pco(ka, T )  is related at long times (7 =CO) to the long-time diffusion coefficient 

(3.10) 

where (2.5), (3.2), (3.3) and (3.9) have been used. This lowest moment is also simply 
related to another measure of long-time diffusivity introduced by Griiner and Lehmann 
(1979) who measured a quantity 

by 

D k ( k )  = D o [ H c ( k a ) / S ( k a )  +pCo(ka, 0311 

A(k)  = (D,S(k) - D,L(k))/D,S(k). (3.1 1) 

This A(k)  is related to pco(ka, m) by 

A(k)  = -(S(ka)/Hc(ka))pc0(ka, a). (3.12) 

The formulae (3.1H3.10) hold for self diffusion if S(ka)  is replaced by 1 and the 
subscript c by s. 

The usefulness of the representation (3.8) depends on how the moments p,,(ka, T )  

vary with time, wavenumber and concentration. If the memory function A ( k a ,  T )  were 
a delta function S(T) then all moments but po would vanish and (3.8) would predict 
simple exponential decay of S ( k a ,  T )  for all T. Evidently then deviation from simple 
exponential decay is expressed through the higher-order moments which give a measure 
of the lifetime of memory effects. We next turn to a model system in order to get an 
idea of how the moments p,,(ka, T )  depend upon ka and T. For simplicity we ignore 
hydrodynamic interactions in the next two sections so that in the formulae above we 
put Hc(ka)  and H,(ka) equal to one. Hydrodynamic effects of course also contribute 
to the memory function (Ackerson 1978, Jones and Burfield 1982a, b) and we will 
neglect these as well. In the later discussion we will indicate what changes might be 
expected if the hydrodynamic interactions were included. 

4. Hard-sphere model for the memory function 

To study the moments p.,(ka, T )  we take as a model system a suspension of hard 
spheres at low density without hydrodynamic interactions for which we can give an 
analytic expression for p, (ka ,  T )  that is easily evaluated numerically. The only other 
case in which something is known about the memory function is the case of a highly 
charged low-density suspension where graphs of the memory function have been 
published by Hess and Klein (1983) based on a mode coupling approximation. 

The use of hard spheres should not be too restrictive a model, however, since for 
ka 3 2 the low-density result is thought to be qualitatively similar to the high-density 
hard-sphere result (Felderhof and Jones 1983c), which itself can be used as a rough 
model (after scaling of lengths) for a low-density charged suspension (van Megan and 
Snook 1983). 
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Specifically then we consider hard spheres of radius a and volume fraction 4 = 
4ra3n /3  where n = N /  V is the number density of the suspension. By comparison of 
(3.2) with the calculatifn of 6 , ( k ,  w )  by Felderhof and Jones (1983b), it follows that 
the memory function Mc(k, w )  is given exactly to lowest order in volume fraction 4 by 

I even 

where j,, kl are spherical Bessel functions, primes denote derivatives (j;( z )  = djl( z)/dz) 
and the variable p is given by 

p =(k2/4-iw/2Do)"2. (4.2) 
The memory function for self diffusion in this model is given by an expression like 
(4.1) with 24 replaced by 12 and the summation including both odd and even values 
of 1. 

To obtain M,(k, t )  we use the inverse Fourier-Laplace transform 
m 

Mc(k, t )  = ( 2 ~ ) - '  e-iY'Mc(k, w )  d o  (4.3) 

where the integration path is the real w axis. From (4.1), (4.2) it is evident that f i c ( k ,  w )  
is analytic in w except for branch points at w = -iD0k2/2 and w = -im which may be 
joined by a cut along the negative imaginary axis of w .  By moving the contour of 
integration in (4.3) into the lower half w-plane we express M,(k, t )  as an integral 
around the cut as indicated in figure 1. Introducing a variable p along the cut by 

w = -iiDok2[1 +p/4(ka)'] (4.4) 

+ 

Figure 1. The complex w plane showing the cut along the negative imaginary axis together 
with the contour of integration used in deriving (4.5). 

we obtain for M,(k, t )  

where fic*(k, p )  denotes f i c ( k ,  w )  evaluated on the f sides !f the cut respectively as 
in figure 1. To find the discontinuity across the cut, A,+ - Mc-, we must evaluate 

(4.6) kr (2p+a) / (2p+a)k i (2~+a)  - k , (2~-~) / (2p -a )k ; (2p -a )  = i Q ( p )  
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where 
- 

2p,a = *iR = * t i J p .  

For I = O  it is trivial to evaluate D o ( p )  as 

D o ( P )  = 2JP/(4 + P 2 ) .  

For general I values it is still possible to evaluate Dl( p )  in simple explicit form by use 
of a sequence of Bessel function relations. The first transformation of the left-hand 
side of (4.6) uses the relations 

where j,, y l  and hj” are standard spherical Bessel functions (Abramowitz and Stegun 
1965), to obtain 

(4.14) 

The function ( r / 2 R ) M 7 + l 1 2 ( R )  is a polynomial 

with coefficients 

C( I ,  p )  = (2 I - p )  ! (2 I - 2 p )  !/ p ! [(I - p )  !]’. 

Putting these last expressions into (4.14) gives finally 

(4.16) 

I 

p=o p = o  
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Remembering (3.6) and combining (4.1), (4.9, (4.6) and (4.17) we obtain for the 
memory function A,( ka, T )  the expression 

I even 

with the function H l ( z )  defined by a definite integral 

(4.19) 

The moments pc , (ka ,  T )  are given by integration of the expression (4.18) over a finite 
time interval. After interchange of the order of the p and T integrations the time 
integration can be evaluated analytically to give a function 

g, (p / (ka ) ’ ,  T )  = ( n ! ) - l  T’, exp[-(f+p/8(ka)*)~’] d ~ ’ .  (4.20) 1: 
For n = 0 this is 

go(p/(ka)’, T )  = [f +~/8(ka>’I-’{l -ex~[-(f +~/8(ka)’)73) (4.21) 

and at all higher n values g ,  can similarly be expressed in terms of elementary functions. 
The remaining p integration defines a function 

(4.22) 

(4.23) 
I even 

To get As(ku, T )  and pS,(ku, T )  for self diffusion one simply replaces $ by f in (4.18) 
and (4.23) and sums over both even and odd 1 values. In the last expression (4.23) 
there remains a one-dimensional definite integral which must be evaluated numerically 
to obtain p,(ka,  7).  

From (4.18) one sees that A(ka,  T )  has an overall slow exponential decay due to 
the factor exp(-~ /2)  which, in dynamical terms, arises from the diffusion of the centre 
of mass of a pair of particles in the suspension. A simple scaling of variables in the 
integral in (4.19) shows that as T + 0, A(ka, T )  diverges as T-”’ (Ackerson and Fleishman 
1982) while the moments p,(ka, T )  are finite, behaving as 

(4.24) 

From the basic definition (3.9) or from (4.24) it is clear that for T <  1 the ~ , ( k a ,  T )  

decrease rapidly in magnitude as n increases, but for T >  1 this need not be the case. 
To study the detailed behaviour of p,(ka, T )  the first four moments (n = 0, 1,2,3) have 
been calculated throughout the ranges of ka and 7, 0.1 S ka s 6.0 and 0 6 T s 6.0. A 
sample of these numerical results is presented in figures 2 and 3 as well as in tables 1 
and 2. For a hard-sphere suspension the structure factor S ( h )  has its maximum at a 
value k,,, which is given in terms of the radius a by kmaxa = 3. In figures 2 and 3 are 
shown graphs of -p , /4  against T for both collective and self diffusion at a wavenumber 
(ka = 2.0) which is just below k,,,, while in tables 1 and 2 the analogous results are 

n+1/2 
pn(ka, 71-7 . 
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Figure 3. Graphs showing the dependence of the 
quantities -pL, , (ka,  +)/$ ( n  =0,  1, 2,3) upon the 
time T for wavenumber ka = 2.0. 

T T 

Figure 2. Graphs showing the dependence of the 
quantities -wCn(ka,  T ) / $  ( n  =0, 1,2, 3) upon the 
time T for wavenumber ka = 2.0. 

Table 1. Collective diffusion at wavenumber ka = 0.3. 

0.10 
0.30 
0.50 
1 .oo 
1.50 
2.00 
2.50 
3.00 
3.50 
4.00 
4.50 
5.00 
5.50 
6.00 

0.174 
0.208 
0.221 
0.233 
0.238 
0.240 
0.241 
0.242 
0.242 
0.243 
0.243 
0.243 
0.243 
0.243 

0.0036 
0.0096 
0.0 144 
0.023 1 
0.0288 
0.0327 
0.0355 
0.0375 
0.0389 
0.0399 
0.0407 
0.0413 
0.04 17 
0.0420 

9.1 (IO-’) 
6.8 ( I  O K ~ )  
0.00 16 
0.0048 
0.0083 
0.01 17 
0.0148 
0.0175 
0.0198 
0.02 18 
0.0234 
0.0248 
0.0259 
0.0268 

2.0 (10-6) 

1.7 
9.7 

4.4 ( 1  0 - 7  

0.0024 
0.0044 
0.0067 
0.0092 
0.01 17 
0.0142 
0.0165 
0.0 I86 
0.0206 
0.0223 

presented numerically at a wavenumber (ka  = 0.3) much less than k,,, and close to 
the hydrodynamic limit k = 0. 

The numerical study shows that throughout the range of wavenumbers 0.1 S ka S 6.0 
and for T < 1 the lowest moment po(ka, T )  is much the largest in magnitude; moreover 
it grows extremely rapidly in the time interval O S  T S  0.5. For T >  1 the moment 
po(ka, T )  quickly saturates at a plateau value which at T = 2 is already about nine-tenths 
of its T = cc value. The higher moments for n > 1 grow much more slowly than does 
po and themselves approach plateau values at successively later values of T. From 
tables 1 and 2 it is seen that for ka = 0.3 the lowest moment po is much greater in 
magnitude than any of the higher moments at all times. However, in the graphs of 
figures 2 and 3 at ka = 2.0 one sees that the plateau values reached by the higher 
moments p, ( n  5 1) are of the same order of magnitude as po itself. For the hard-sphere 
model over the time range 0 s T s 6 the moment po is the dominant moment only for 
ka d 0.5 ( k G  0.l5km,,). For ka > 0.5 and at times T >  1 one must include higher 
moments in the differential equation representation (3.8) of the memory equation. 
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Table 2. Self diffusion at wavenumber ka = 0.3. 

~ 

0.10 
0.30 
0.50 
1 .oo 
1.50 
2.00 
2.50 
3.00 
3.50 
4.00 
4.50 
5.00 
5.50 
6.00 

1.64 
1.86 
1.91 
1.94 
1.95 
1.95 
1.95 
1.95 
1.95 
1.95 
1.95 
1.95 
I .95 
1.95 

0.0326 
0.0695 
0.0874 
0.108 
0.1 I6 
0.121 
0.124 
0. I26 
0.127 
0.128 
0. I28 
0.129 
0.129 
0.129 

8.1 
0.0042 
0.0077 
0.0148 
0.0202 
0.0242 
0.0274 
0.0299 
0.03 19 
0.0335 
0.0348 
0.0358 
0.0366 
0.0372 

1.7 
2.5 
7.1 
0.0025 
0.0047 
0.0070 
0.0094 
0.01 17 
0.0138 
0.0158 
0.0176 
0.0192 
0.0206 
0.02 I8 

5. Analysis of experimental data 

In 0 3 it was shown (3.10) that the theoretically defined long-time diffusivities Dk(k),  
D,L(k) are given in terms of the lowest moments pco(ka, T ) ,  pSo(ka, T )  at T = Co. Is it 
possible then to extract a value for po(ka, 00) from experimental data which are mostly 
confined to the range 0 s T s 6 with the most accurate data lying in a smaller range 
near T = O? To try to answer this question one can use the behaviour of the moments 
in the hard-sphere model of 9 4 as a qualitative guide. The results above suggest that 
if one is close enough to the hydrodynamic limit ( k s  0.15km,,) then all moments but 
po are negligible. In such a case the differential equation (3.8) reduces to 

dSc(ka, T)/dT= -(l/S(kU)+p&(ka, 7) )gC(ka ,  T )  (5.1) 

so that the slope of In Sc(kka, T )  directly gives l / S ( k a )  +pcO(ka, 7).  Since, by T = 2, pco 
has almost reached its T =a value we conclude from (3.10) that a simple slope 
measurement will indeed give Dk(k) and that Sc(ka, T )  will behave as a simple 
exponential for times T > 2. 

Unfortunately, at larger wavenumber k the higher moments ( n  2 1) begin to con- 
tribute significantly at times T > 2 so one must correct for their presence if one tries 
to extract pco alone. The first possibility to consider is one in which the memory 
function (and hence also the moments pen) is small in comparison with the term in 
(3.8) which includes l/S(ka). Since the memory effects vanish as 4 + 0 and at short 
times there will certainly be regimes where we can make the small memory function 
approximation (neglecting hydrodynamic interaction): 

dSc(ka, T)/dTz -(S(ka))-'SC(k~, 7). (5.2) 

d"Sc(ka, T)/dTn -(-1/S(ka))"SC(kka, T) (5.3) 

(5.4) 

One can now use (5.2) to estimate all higher derivatives in (3.8) as 

to obtain from (3.8) the expression 
m 

d In gC(ka,  T)/dT= - [ l / S ( k a ) + p c o ( k a ,  T)]- 1 pcn(ka,  ~ ) / S " ( k a ) .  
" = I  
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One sees now that if is not the dominant moment then the higher moments will 
reach non-negligible plateau values in succession as r increases producing a steadily 
changing slope of In s C ( k a ,  7) .  Such a behaviour is seen qualitatively in some experi- 
mental data (Cebula et a1 198 1, Kops-Werkhoven and Fijnaut 1982, Kops-Werkhoven 
et a1 1982). Suppose now that we know from experiment In 9,(ka,  r )  and its slope E ( r ) ,  

( 5 . 5 )  
How can one extract pco from these data which by (5.4) include higher-moment 
contributions as well? For the sake of illustration consider a time regime during which 
only the first three moments ( n  = 0, 1,2) are of significant magnitude. Then we can 
truncate the summation in (5.4) at n = 2 and use the following identities: 

E ( r )  = d In sC(ka ,  r)/dr. 

P c d k  7 )  = w c o ( h  7 )  - 

P c 2 ( b  7 )  = ; r21.Lco(h 7 )  - 

Pco(& 7’) dr’, I: (5.6) 
T ’Pco(k  7’) d r f ,  J: 

to convert (5.4) into an integral equation giving pc0(ka, r )  in terms of E(r ) :  

The integral terms here account for the presence of higher moments; since these effects 
should be small a simple iterative solution of (5.7) should suffice to extract a value for 
pco(ka, r )  out to perhaps r==2 where as we have seen in 0 4 it has almost reached its 
r = 00 value. 

Finally we consider the case that the memory function cannot be regarded as small 
(e.g. at high concentrations) so that the estimate (5.3) is invalid. In such a case the 
derivative terms on the right-hand side of (3.8) must be kept through some order n at 
which the moments pcn become negligible. As an example, suppose that up to some 
time r only pco and p,, are significant. Then (3.8) reduces to 

which again can be solved for pco in terms of E(r ) .  If both n = 1 and n = 2 terms are 
significant, as when the curvature of In gC(ka,  r )  is not negligible, we have a second- 
order differential equation from (3.8) 

(5.10) d s C / d r  = - (S-‘  +p,o).Fc +pel d9Jd.r  - p,2 d2.Fc/dr2. 

Using (5.6) we can express this also as an integral equation 

- E ( r )  [;pco(ka, r ’ )dr‘-(k(r)+E2(r))  
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where now the curvature of In PC(ka, T) is taken account of through the combination 
k ( ~ )  + E2(7) .  A similar analysis holds for self diffusion after the replacements S ( k a )  -$ 1 
and c+  s. 

6. Conclusions 

Consideration of the model memory function of Q 4 in conjunction with the differential 
equation form of the memory equation in (3.8) leads to the following conclusions 
about obtaining long-time diffusivities from experimental curves of In 9c(ka ,  T) or 
In g S ( k a ,  T ) .  First of all, the hydrodynamic limit regime consists of the wavenumber 
range O s  k <  0.15k,,,. In this range of k, 9 ( k a ,  T) should appear to be a simple 
exponential for all experimentally accessible times T >  1 and  the slope of In 9 ( k a ,  T )  

in this region should give the long-time diffusivity DL(k) .  At larger values of k the 
slope of In 9 ( k a ,  T) depends on several moments p, when T >  1 and there should be 
a slowly changing slope as T increases, implying that 9 ( k a ,  T )  is not a simple exponential 
in this regime. In 0 5 it is shown how one can take account of these higher moments 
in order to extract only the lowest moment po from the experimental curves. A 
determination of p0(7) out to about T = 2 should give a good estimate of po(m) and 
hence of DL(k) .  A measurement of D L ( k )  obtained in this way from short-time data 
should be a useful alternative to the measurement of DL(k) by the area determination 
method of (2.8). 

The fact that the moments p , ( ~ )  for n 3 1 are of significant magnitude indicates 
that the hard-sphere memory function decays slowly. The memory function curves of 
Hess and  Klein (1983) for charged suspensions show a qualitatively similar behaviour. 
In both high-density hard-sphere systems and low-density charged systems (Pusey and 
Tough 1982) the structure factor S ( k )  shows great variability with wavenumber, ranging 
from S(k)=0.1 at small k to S ( k ) >  1.5 at  k,,,. For small values of S ( k )  the initial 
decay of gC(7) is exceedingly rapid and  the graph of In 9c (~ )  shows a rapidly changing 
slope so that an analysis like that of Q 5 should include at least the second derivative 
of ~ J T )  as indicated in (5.1 1). For k > k,,, when S ( k )  is of order 1 it should be 
possible to ignore the second derivative and  use (5.9) instead. Finally we remark that 
if hydrodynamic forces are included in the hard-sphere model the qualitative effect at 
moderate concentrations will be to reduce the magnitude of the memory function since 
the small radial mobility near contact reduces the effect of the large hard-sphere contact 
force (Jones and Burfield 1982a, b). This suggests that the small memory function 
approximation of (5.4) and (5.7) may be appropriate for real low-density hard-sphere 
systems if one takes account of the short-time hydrodynamic effects by the replacement 
l /S(ka)  -$ H ( k a ) / S ( k a ) .  
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